~_ Manual
Mais Processor

a 32 bit processor written in VHDL

Dossmatik GmbH
Karlstrafie 41
04420 Markranstadt

Germany
Autor: René Dof3
Date: 6.12.2013
Version: 1.0

licence: Creative Commons CC BY-NC 3.0 with exception
— commercial applicants have to pay a licence fee —

Disclaimer, Warranty

Dossmatik GmbH is not responsible for the end product or success of the end product in any
way. The final sign and acceptance test of any products or designs is the sole responsibility of the
customer. The processor core is permanent under development and does not pass the full accep-
tance test. Many features are working and can be used. It can’t garantee the whole preformance.

The manual is written to give you quick start and an overview of the core. Please do not
hesitate to contact us. Any requests are welcome.

Contents

Introduction

Pipeline
2.1 pipelining basics L

peripherals
3.1 BusIntroduction
3.2 multislave bus

Crosscompile

Assembly Language

5.0.1 pointer operation Lo e e
5.0.2 GNUinline asm e

Instructions

6.1 Overview Instruction
6.1.1 arithmetic instructions
6.1.2 memory instructionso Lo
6.1.3 logicinstructions Lo L
6.1.4 special instructions oL Lo oL
6.1.5 jump and branch instructions oo

6.2 Instructions e

11
11
12

13

17
17
18

CONTENTS

preamble

Sometimes it is laborious to solve all functions in a HDL description. Often some tasks are
simplier and better to implement in a programming language like C or Assembler. The develop-
ment in HDL takes more time und you will reduce your effort when you can write some parts in
software. The border of hard- and software is a design decision. An implemention on a FPGA
has a leak. There is no microcontroller available. The scope of the Mais processor is a linking
element between some hardware and software descriptions. The core is written in VHDL and
can simulate in a VHDL simulator like GHDL.

There are good documentation about MIPS architecture [2]. This is not the first open source
implementation but this is the first practical impementation with a starting point for soft core
beginners. The VHDL code is written without any spezial elements. This makes the code is
portable to all FPGAs. Mais is a huge reimplementation. The endeavour was to get an optional
processor.

System architechture is an effective 32-bit RISC processor with 5 pipe stages. One instruction
can execute on one clock cycle. Only the load from memory takes longer.

A MIPS compiler can produce hexcode for the Mais processor. Also the GNU toolchain is
useable for software coding.

I deliver also makefiles for some tools like compiler or simulation. Makefile is an excelent tool
to enhance your productivity.

I hope you will choose Mais for your work.

CONTENTS

Chapter 1

Introduction

FPGA has only logical gates and simple digital elements. A hardware description language
is used to build lager blocks with higher functionality. A special function is a processor. It
can execute software and divide the design in Hardware an Software development. This is an
universal part. A processor is well familiar in emdedded design. A softcore give more flexibility
the product.

Mais-CPU is written in VHDL. Havard architecture separates Instruction RAM und Data
RAM in separate memories. MAIS-CPU is compatible to MIPS instruction Set Architecture.
All instructions are 32bit width. It is possible to use a GNU C-Compiler. Calculating of data
and statemachines can be written in software. A bus interface connects devices with the CPU.
This implementation is SoC (system on Chip).

(Application) (Operating System)
\

. /

Instruction Set 1/O System

peripherals

. digital
Microcontroller

I Cicuit Design |

Figure 1.1: embedded design

Hardware Software

8 CHAPTER 1. INTRODUCTION

The CPU is designed in a typical pipeline architecture. The advantage is, in each clock cycle
is equal one maschine cycle. At a branch the followed instruction is also executed. It is the branch
delayed slot. Mais was developed as single core. A single core needs no data synchronisation. A
good general book about MIPS is [4].

Periphery

| Branch l:—))
Elnstruction $Fetch E:> Decode @, ALU WB

IMemory Data E>
g\V Memory
Global [
[—' Register

Instruction i Instruction | Execute Memory Write-
Fetch Decode back

liIIIIIIIIII|

Figure 1.2: Mais architecture

=
2

Chapter 2

Pipeline

2.1 pipelining basics

An unpiplined system has a reduced throughout [4]. The combinatory logic is strong branched.
One instruction must complete before next instruction can begin. The clockrate is lower or
one instruction need several clock periodes. Several instructions are processed in a pipelining
architecture at the same time. The treatment is not parallel, each instruction is in another state.
In each state a particular task is carrying out. Followed instructions are placed sequentially into
the pipe.

The store instructions are straight away. Register values are written in memory. No dataflow
is backward. The register values in the pipline are valid for all cases. All followed instructions
are in indepentent in pipeline. No conflicts are possible.

Instruction
execute

>

Instruction
decode

i Memory Write to

Register

Instruction
fetch

Read
Register

Write
Register

Figure 2.1: store pipe

The load instruction takes values from memory into the Register.

10

CHAPTER 2. PIPELINE

Instruction
fetch

decode

Read -;D_B
. e
Register P
s
Write o3
Register <€

Instruction Instruction
| execute

Memory

Write to
I Register

Figure 2.2: load operation

Alu instruction uses values form register and writes data in the registers back. A critical
situation accurs when a result is stored in a register and the next instruction use this result.
Normaly a pipelining hazard exists. The Mais processor has a forwarding path. Extra Hardware
resolves this hazard. The pre-existing value is catched in the pipeline and is overwrite in the

execute state.

Instruction
fetch

decode

Read

Write
Register

Register

Instruction Instruction
| execute

path 5

A forward

Figure 2.3: alu operation

Memory

Write I«

)
U

Register

Chapter 3

peripherals

3.1 Bus Introduction

The CPU communicates over a bus to all peripheral devices. A bus is a typical interface in data
extensions system. The bus is the simple peripheral bus. This is single slave bus architecture.
CPU is master and all other devices interact as slaves.

All signals are active HIGH.

Name Source Description

BCLK global this is the CPU clock and the bus runs
with this clock

BRESET global high signal reset the slave

BADDRI31:0] master address

HSEL [x:0] master slave select signals matchs too the high-
est address bits

BWR master indicate a read transfer

BRD master indicate a write transfer

BACTIVE master indicate a write or read transfer

BMASK [3:0] master indicate ative bytes in transfer

BWDATA[31:0] master write data during write transfer from
master to slave

BREADY master signals to slave are valid

BRDATA[31:0] slave read data during read transfer from
slave to master

BREADYOUT slave when High the transfer complete, when
Low interlock the bus

11

12 CHAPTER 3. PERIPHERALS

t0 t1 t2 t3 t4
6161« I N T e e T
BADDR addr A addrp addrc addrp
BWRITE! Writea ' Writeg ! Writec ' Writep |

BREADY ! l A B | c \

3.2 multi slave bus

The Mais CPU is wired in MAIS _soc.vhd. The Memory is in the example bus slave 0 at address
0x00000000. Slave 1 is an UART for simple communication at address 0x20000000. The third
slave is a bus dummy. A bus dummy puts out definded and valid signal on the bus, when no
data trafic is on the bus.

BRDATA [31:0] Mais-CPU

TBCLK

BREADYOUT
> BUS-MASTER

BSEL
?7 N —

BSEL[x:0]
BMAGSK [3:0]
BADDR [31:0]
BWR

BRD

BACTVE
BWDATA[31:0]
BREADY

Y YV VYV YVY

device device device

TBCLK
TBCLK
TBCLK

BUS-SLAVE 2 BUS-SLAVE 1 BUS-SLAVE 0

Figure 3.1: multi slave bus

Chapter 4

Crosscompile

L s s s s s s s s s s s s s
makefile for build mips tool chain

written by René Doss
after preliminary work by

Dmitriy Schapotschkin and Martin Strubel
s e

#
#
#
#
#
#

BINUTILS = binutils-2.22
GCC = gcc-4.4.3

NEWLIB = newlib-1.20.0
GDB = gdb-7.5

ARCHITECTURE = mips-elf
PREFIX =/opt/mips

GCC_OPTS = \
--with-newlib\
--with-float=soft\
--disable-nls \
--disable-threads \
--disable-shared \
--disable-libssp \
--with-gnu-1d --with-gnu-as

.PHONY: download install-newlib install-binutils install-gcc
download:

13

14 CHAPTER 4. CROSSCOMPILE

#download binutils

wget ftp.gnu.org/gnu/binutils/$(BINUTILS) .tar.gz

tar -xzf $(BINUTILS).tar.gz

#download gcc

wget ftp://ftp.gwdg.de/pub/misc/gcc/releases/$(GCC)/$(GCC) .tar.gz
tar -xzf $(GCC).tar.gz

#download newlib

wget ftp://sources.redhat.com/pub/newlib/newlib-1.20.0.tar.gz

tar -xzf newlib-1.20.0.tar.gz

download-gdb:

#download gdb

wget ftp://ftp.gnu.org/gnu/gdb/$(GDB) .tar.gz
tar -xzf $(GDB).tar.gz

build-gdb:
mkdir gdb

cd gdb; \

../$(GDB) /configure --target=$(ARCHITECTURE) --prefix=$(PREFIX) --without-auto-load-safe-path
make all 2>&1 | tee gdb_build.log

install-gdb:
cd gdb;\
make install 2>&1 | tee gdb_install.log

build-binutils:

mkdir binutils

cd binutils; \

../$(BINUTILS) /configure --prefix=$(PREFIX) --target=$(ARCHITECTURE) 2>&1 | tee binutils_conf
make all 2>&1 | tee binutils_make.log

install-binutils:
cd binutils; \
make install 2>&1 | tee binutils_install.log

build-gcc-bs:

mkdir gcc-bootstrap

export PATH=$$PATH:$(PREFIX) /bin; \

cd gcc-bootstrap; \

../$(GCC) /configure --target=$(ARCHITECTURE) \
$(GCC_OPTS) --without-headers \

—--prefix=$ (PREFIX) 2>&1 |tee gcc-bs_configure.log;\
make all-gcc 2>&1 | tee gc-bs_make.log

install-gcc-bs:
cd gcc-bootstrap; \
make install-gcc 2>&1 | tee gcc-bs_install.log

15

build-newlib:

mkdir newlib

cd newlib \

export PATH=$$PATH:$ (PREFIX) /bin; \

. ./$(NEWLIB) /configure --target=$(ARCHITECTURE) --prefix=$(PREFIX) --with-float=soft ; \
make all 2>&1 | tee newlib.log

#hier weiter aufraumen

install: install-binutils install-gdb install-gcc

install-newlib:
export PATH=$$PATH:$(PREFIX)/bin; \
$(MAKE) -C newlib install

.PHONY: download build-newlib build-binutils build-mpfr build-gcc

build: build-binutils build-gcc

newlib/config.status: $(NEWLIB)/configure

[-e newlib] || mkdir newlib
export PATH=$$PATH:$(PREFI)/bin; \
cd newlib; \

$ (NEWLIB) /configure --target=$(ARCHITECTURE) \
—-prefix=$(PREFIX)

16 CHAPTER 4. CROSSCOMPILE

gcc-newlib/config.status: $(UNISRC)/gcc/configure
[-e gcc-newlib] || mkdir gcc-newlib

cd gcc-newlib; \

../$(UNISRC) /configure --target=$ (ARCHITECTURE) \
$(GCC_OPTS) --with-newlib \

--prefix=$ (INSTALL_PREFIX) \

—-with-sysroot=$ (INSTALL_PREFIX) \
--with-build-sysroot=$ (BUILD_PREFIX)

Chapter 5

Assembly Language

There are 31 general purpose 32bit registers. Register 0 has a special function. It can be written
but the readout value is allways constant 0. The register 31 has also a special application in
some branch function the return adress is saved in branch link instruction. The other registers
are without special effects. Typical convention applies by compiler.

#include <mips/asm.h>
#include <mips/regdef.h>

Hardware Common Description

Name Name

$0 Z€ero zero register always has the value 0
$1 at Assembler temporary

$2-$3 v0-v1 function result register

$4-$7 a0-a3 function argument

$8-$15 t0-t7 temporary, saved by caller

$16-$23 s0-s7 temporary

$24-$25 t8-19 temporary

$26-$27 kO0-k1 reseved for OS

$28 gp global data pointer to data segment
$29 Sp stack pointer

$30 fp or 88 frame pointer

$31 ra return address

There are three special registers. The PC (program counter) holds the address of the next
instruction. Only implicity access modifies by certain instructions.
If the design has a multiplyer, two additional registers are available HI and LOW registers.
These are the result registers of multiplying and division operation. Multiply instruction has a
result of 64bit. Divide instruction placing the quotient and a reminder in HI an LOW register.
Integer multiplies and divide calculation need some more clock cycles. It runs parallel with other
instructions.

5.0.1 pointer operation

sw $26 , GDBState
la $26 , (input_buffer)

17

18 CHAPTER 5. ASSEMBLY LANGUAGE

5.0.2 GNU inline asm

Sometimes it is nessarry to combine C and simple ams. The inline assembly have to write in
double quotes. The gce sends the instruction as string to as. The basic format of inline assembly
is

asm("assembly code");

If more than one instruction are written, it have to separated by "\n\t" .

asm("assembly code \n\t"
"assembly code"

)3
The general form with operands is

asm(" asm code ": output operand list : input operand list);
asm ("mfcO %[result] ,$12":[result] "=r"(var));
asm ("mtcO % [value] ,$14": :[value] "r"(*ptr));

Chapter 6

Instructions

6.1 Overview Instruction

[4] 1] 3]

6.1.1 arithmetic instructions

Mnemonic | Description

ADD add

ADDI add immediate word

ADDIU add immediate unsigned word
ADDU add immediate unsigned word
SUB subtract word

SUBU subtract unsigned word

DIV divide word**

DIVU divide unsigned word**
MULT multiply word**

MULTU multiply unsigned word**
MFHI move from HI register

MFLO move from LO register

MTHI move to HI register

MTLO move to LO register

6.1.2 memory instructions

Datas can be only moved between memory and the CPU general registers by load and store
instructions. For different data lengths exist are also the correct load and store.

19

20

Mnemonic | Description

LB
LBU
LH
LHU
LW
LWL
LWR
LWU
SB
SH
SW
SWL
SWR

load byte

load byte unsigned
load halfword

load halfword unsigned
load word

load word left

load word right
load word unsigned
store byte

store halfword
store word

store word left
store word right

CHAPTER 6. INSTRUCTIONS

The instuction calculates the access address from the content of one register and an fixed
offset. The offset can be negative.

31 26 25 2120 16 15 0
OPCODE| RS OFFSET
Y Y
Register Sign-Extend
value

31

Effective Address

Figure 6.1: Address calculation for Loads and Stores

The specific mnemonic is such as

1w t0,20(t1)

A pseudo instruction exist in assembler.

1w t0,0x12345678

and expand to

lui at,0x1234
1w t0,0x5678(at)

6.1. OVERVIEW INSTRUCTION

6.1.3 logic instructions

Mnemonic | Description

AND And

ANDI And Immediate

LUI load upper immediate

NOR not or

OR or

ORI or immediate

SLL shift word left logical

SLLV shift word left logical variable

SLT set on less than

SLTI set on less than immediate

SLTTU set on less than immediate unsigned
SLTU set on less than unsigned

SRA shift word right arithmetic

SRAV shift word right arithmetic variable
SRL shift word right logical

SRLV shift word right logical variable

6.1.4 special instructions

Mnemonic ‘ Description

BREAK
SYSCALL
ERET
NOP

Breakpoint

syscall

return from exception
no operation

21

22

CHAPTER 6. INSTRUCTIONS

6.1.5 jump and branch instructions

Mnemonic | Description

B Branch**

BAL Branch and link**

BEQ Branch on equal

BEQL Branch on equal likely*

BEQZ Branch on equal zero**

BGE Branch on greater than equal**

BGEU Branch on greather than equal unsigned**
BGEZ Branch on greater than or equal to zero
BGETAL Branch on greater than or equal to zero and link
BGEZALE | Branch on greater than or equal to zero and link likely*
BGEZL Branch on greater than or equal to zero likely*
BGT Branch on greater than**

BQTU Branch on greater then unsigned**

BGTZ Branch on greater than zero

BGT4E Branch on greater than zero likely*

BLE Branch on less than equal**

BLEU Branch on less than equal unsigned**
BLEZ branch on less than or equal to zero
BEEZE Branch on less than or equal to zero likely™*
BLT Branch on less than™*

BLTU Branch on less than unsigned**

BLTZ Branch on less than zero

BLTZAL Branch on less than zero and link
BEFZAEE | Branch on less zero and link likely*
BLTZL Branch on less than zero likely*

BNE Branch on not equal

BNEEL Branch on not equal likely™*

BNEZ Branch on not equal zero**

J Jump

JAL Jump and link

JALR Jump and link register

JR jump register

* likely is not implemented, use gce option -mno-branch-likely

** pseudoinstruction

A delay slot may not itself occupied by a jump or branch instruction. This combination of
opcodes has an unpredictable situation. Also a had crash is possible that only a reset can resolve
it.

6.2. INSTRUCTIONS

6.2 Instructions

23

ADD
31 25 20 15 10
oP 0 ADD
000000 rs rt rd 00000 100000
6 5 5 5 5 6

Format: ADD rd,rs,rt

Purpose: to add two register in 32 bit integer format
Operation: r{rd] < r[rs] + r[rt]

ADDI add immediate

31 25 20 15
oP
001000 TS rt immediate
6 5 5 16

Format: ADDI rd,rs,immediate

Purpose: to add a constant to a register
Operation: r[rt] < r[rs] + immediate

ADDIU add immediate unsigned

31 25 20 15
op
001001 IS rt immediate
6 5 5 16

Format: ADDIU rd,rs,immediate

Purpose: to add a constant to a register
Operation: r[rt] < r[rs] + immediate

24 CHAPTER 6. INSTRUCTIONS

ADDU

31 25 20 15 10)
0) 0 ADD
000000 IS rt rd 00000 100001
6 5 5 5 5 6

Format: ADDU rd,rs,rt

Purpose: to add two register in 32 bit integer format
Operation: r[rd] < r[rs| 4+ r[rt]

AND
31 25 20 15 10)
oPpP 0 ADD
000000 IS rt rd 00000 100100
6) 5)) 6

Format: AND rd,rs,rt

Purpose: two register bitwise logical AND
Operation: r[rd] < r[rs] and r[rt]

ANDI and immediate

31 25 20 15
OP
001100 s rt immediate
6 5 5 16

Format: ANDI rd,rs,immediate

Purpose: bitwise logical AND with a constant
Operation: r[rt] < r[rs] and immediate

6.2. INSTRUCTIONS 25

BEQ Branch on equal

31 25 20 15
oP
000100 rs rt offset
6 5 5 16

Format: BEQ rd,rs,offset

Purpose: branch on equal relative offset
Operation: ¢f r[rs] = r[rt] then pc <+ pc+ (of fset << 2)

BGEZ Branch on greater than or equal to zero

31 25 20 15
op
000001 s 00001 offset
6 5 5 16

Format: BGEZ rs,offset

Purpose: branch on equal relative offset;
Operation: ¢f r[rs] > 0 then pc < pc+ (of fset << 2)

BGEZAL Branch on greater than or equal to zero and link

31 25 20 15
oP
000001 s 10001 offset
6 5 5 16

Format: BGEZAL rs,offset

Purpose: branch on greater than or equal relative offset; rescue the link address in R[31]
Operation: ¢f r[rs] > 0 then pc <+ pc+ (of fset << 2)
r[31] < pc+ 8

26 CHAPTER 6. INSTRUCTIONS

BGTZ Branch on greater than zero

31 25 20 15
op
000111 s 00000 offset
6 5 5 16

Format: BGTZ rs,offset
Purpose: branch on greater than zero relative offset

and clear the delay slot if no branch is taken
Operation: ¢f r[rs] > 0 then pc + pc+ (of fset << 2)

BLEZ Branch on less than or equal to zero

31 25 20 15
or
000111 s 00000 offset
6 5 5 16

Format: BLEZ rs,offset

Purpose: branch on on less than or equal to zero relative offset
Operation: ¢f r[rs] < 0 then pc + pc+ (of fset << 2)

BLEZL Branch on less than or equal to zero likely

31 25 20 15
op
010110 IS 00000 offset
6 5 5 16

Format: BLEZL rs,offset

Purpose: branch on on less than zero relative offset
Operation: ¢f r[rs] < 0 then pc + pc+ (of fset << 2)

Likely is not implemented. Behaviour is the same like instruction BLEZ.

6.2. INSTRUCTIONS 27

BLT7Z Branch on less than zero

31 25 20 15
or
000001 s 00000 offset
6 5 5 16

Format: BLTZ rs,offset

Purpose: branch on on less than zero relative offset
Operation: ¢f r[rs] < 0 then pc + pc+ (of fset << 2)

BLTZAL Branch on less than zero and link

31 25 20 15
oP
000001 rs 10000 offset
6 5 5 16

Format: BLTZAL rs,offset
Purpose: branch on less than zero relative offset; rescue the link address in R[31]

Operation: ¢f r[rs] < 0 then pc + pc+ (of fset << 2)
r[31] < pc+ 8

BLTZL Branch on less than zero likely

31 25 20 15
oP
000001 s 00010 offset
6 5 5 16

Format: BLTZ rs,offset

Purpose: branch on less than zero relative offset
Operation: ¢f r[rs] < 0 then pc < pc+ (of fset << 2)

Likely is not implemented. Behaviour is the same like instruction BLTZ.

28 CHAPTER 6. INSTRUCTIONS

BNE Branch on not equal

31 25 20 15
oP
000101 s rt offset
6 5 5 16

Format: BNE rs,rt,offset

Purpose: branch on not equal relative offset
Operation: ¢f r[rs] # r[rt] then pc + pc+ (of fset << 2)

BREAK Breakpoint

31 25 15 5
oP code
000000 001101

6 20 6

Format: BREAK

Format: BREAK code

Purpose: stop and hold on
Operation: wait

Reserved Break codes:

BREAK 1 stop and generate an interrupt used in debugger
BREAK 7 ignored, generated in C-Code after multiply operation

DIV divide word

31 25 20 15 5
OP 0 DIV
000000 IS rt 00 0000 0000 011010
6) 5 10 6

Format: DIV rs,rt

Purpose: to devide two register in 32 bit integer signed format
Operation: »[LO|R[HI]| + r[rs]/r[rt]

6.2. INSTRUCTIONS 29

DIVU divide unsigned word

31 25 20 15 5
) 0 DIVU
000000 s rt 00 0000 0000 011011
6 5 5 10 6

Format: DIVU rs,rt

Purpose: to devide two register in 32 bit integer unsigned format
Operation: r[LO|R[HI] < r[rs]/r[rt]

ERET return from exception

31 25 20)
CPO 0 ERET
010000 10000 000000000000000 011000
6 5 15 6

Format: eret
Purpose: return from interupt service routine

Operation: pc < cp0(r[14])

The EPC (exeption restart address register) hold the rejump point. This register is located
in CP0. The older instruction RFE is now obsolete. See also [4].

J J ump
31 25
oP index
000010
6 26

Format: J label

Purpose: Simple jump within a 228 byte page. The upper PC bits are untouched. This in-
struction change PC.
Operation: pc <+ pc(bit31...bit28)|index|00

30 CHAPTER 6. INSTRUCTIONS

JAL Jump and Link

31 25
op index
000011
6 26

Format: JAL label
Purpose: Simple jump within a 228 byte page. The upper PC bits are untouched. This in-

struction change PC. Save PC in register $31.
Operation: r[31] + pc;pe < pc(bit3l...bit28)|index|00

JALR jump and link register

31 25 20 15 10 5
oP 0 JALR
000000 s 00000 rd 00000 001001
6 5 5 5 5 6
Format: JALR rs rd=31

Format: JALR rd,rs
Purpose: jump to an address The new address value is in register rs and the current pc is

saved in register rd. Generally is used register $31 for rd.
Operation: r[rd] < pc; pc <+ r[rd]

JR jump register

31 25 20 5
OP 0 JR
000000 IS 000000000000000 001000
6) 15 6

Format: JR rs

Purpose: jump to an address
Operation: pc « r[rs]

6.2. INSTRUCTIONS 31

LA Load address

LA is a pseudo instruction. This instruction is often in asm code but this is only assembler
macro. LA has different options. Se also [1] and [4].

Format: macro instruction
la $2, 4($2) addiu $2, $2, 4
la $2, 32bit lui $2 bit 31...16

ori $2 bit 15...0
la $2, 32bit ($3) | lui $2 bit 31...16
ori $2 bit 15...0
addu $2, $2, $3

Examples:

la $25, main

la $20, 0x12345678

Purpose: load values into register

LB load byte

31 25 20 15
oP
100000 s rt offset
6 5 5 16

Format: LB rt,offset(rs)

Purpose: load signed byte from memory and converted to signed word
Operation: r[rt] - memory(r[rs] + of fset)
(upper bits are signed extended)

32 CHAPTER 6. INSTRUCTIONS

LBU load byte unsigned

31 25 20 15
oP
100100 rs rt offset
6 5 5 16

Format: LBU rt,offset(rs)

Purpose: load a byte from memory
Operation: r[rt] «+ memory(r[rs] + of fset)

LLH load halfword

31 25 20 15
oP
100001 rs rt offset
6 5 5 16

Format: LH rt,offset(rs)
Purpose: load signed half word from memory and converted to signed word

Operation: r[rt] «+ memory(r[rs] + of fset)
(upper bits are signed extended)

LHU load halfword unsigned

31 25 20 15
or
100101 rs rt offset
6 5 5 16

Format: LHU rt,offset(rs)

Purpose: load unsigned half word from memory and converted to unsigned word
Operation: r[rt] - memory(r[rs] + of fset)

6.2. INSTRUCTIONS

LUI load upper immediate

33

31 25 20 15
OoP
001111 00000 rt immediate
6 5 5 16
Format: LUI rt,immediate
Purpose: load a constant into higher two bytes
Operation: r[rt] « immediate << 16
LW load word
31 25 20 15
oP
100011 rs rt offset
6 5 5 16
Format: LW rt,offset(rs)
Purpose: load a word from memory
Operation: r[rt] + memory(r[rs] + of f set)
LWL load word left
31 25 20 15
oP
100010 s rt offset
6 5 5 16

Format: LWL rt,offset(rs)

Purpose: load half word from memory into upper two bits
Operation: r[rt] < memory(r[rs] + of fset) << 16

34 CHAPTER 6. INSTRUCTIONS

LWR load word right

31 25 20 15
oP
100110 rs rt offset
6 5 5 16

Format: LWR, rt,offset(rs)

Purpose: load half word from memory into lower two bits
Operation: r[rt] «+ memory(r[rs] + of fset) & 0x00F F

MFHI move from HI register

31 25 15 10 5
OP 0 MFHI
000000 0000000000 rd 00000 010000
6 10 5 5 6

Format: MFHI rd

Purpose: move HI register into general register
Operation: r[rd] < r[HI|

MFLO move from LO register

31 25 15 10 5
op 0 MFLO
000000 0000000000 rd 00000 010010
6 10) 5 6

Format: MFLO rd

Purpose: move LO register into general register
Operation: r[rd] < r[LO]

6.2. INSTRUCTIONS

MTHI move to HI Register

35

31 25 20)
OopP 0 MTHI
000000 IS 000000000000000 001001
6 5 15 6

Format: MTHI rs

Purpose: general register into HI register
Operation: r[HI] < r[rs]

MTLO move to LO Register

31 25 20)
OopP 0 MTLO
000000 IS 000000000000000 001011
6 5 15 6

Format: MTLO rs

Purpose: general register into LO register
Operation: r[LO] < r[rs]

MULT multiply word

31 25 20 15 5
opP 0 MULT
000000 IS rt 00 0000 0000 011000
6 5 5 10 6

Format: MULT rs,rt

Purpose: to multiply two register in 32 bit integer signed format
Operation: »[LO|R[HI]| < r[rs] * r[rt]

36 CHAPTER 6. INSTRUCTIONS

MULTU multiply unsigned word

31 25 20 15 5
OP 0 MULTU
000000 IS rt 00 0000 0000 011001
6) 5 10 6

Format: MULTU rs,rt

Purpose: to multiply two register in 32 bit integer unsigned format
Operation: »[LO|R[HI] < r[rs] * r[rt]

NOR not or
31 25 20 15 10 5
opP 0 NOR
000000 s It rd 00000 100111
6 5 5 5 5 6

Format: NOR rd,rs,rt

Purpose: two register logical not or
Operation: r[rd] <— r[rs] nor r[rt]

NOP no operation

31 25 20 15 10 5
op 0 0 SLL
000000 00000 00000 00000 00000 000000
6) 5)) 6

Format: NOP

Purpose: do nothing but pc-counter is running, more gap filler, go to the next instruction
Operation: empty cycle

This is a pseudo instruction SLL 0,0,0.

6.2. INSTRUCTIONS 37
OR or
31 25 20 15 10
oP 0 OR
000000 s rt rd 00000 100101
6 5 5 5 5 6
Format: OR rd,rs,rt
Purpose: two register logical or
Operation: r[rt] < r[rs] or r[rt]
ORI or immediate
31 25 20 15
oP
001101 IS rt immediate
6 5 5 16
Format: ORI rt,rs,immediate
Purpose: register logical or immediate
Operation: r[rd] < r[rs] or immediate
SB store byte
31 25 20 15
oP
102000 s rt offset
6 5 5 16

Format: SB rt,offset(rs)

Purpose: store byte into memory

Operation: memory(r[rs] + of fset) « r(rt]

CHAPTER 6. INSTRUCTIONS

38
SH store halfword
31 25 20 15
oP
101001 s Tt offset
6 5) 16
Format: SH rt,offset(rs)
Purpose: store half word into memory
Operation: memory(r[rs] + of fset) <+ r[rt]
SLL shift word left logical
31 25 20 15 10 5
op 0 0 SLL
000000 00000 rt rd sa 000000
6 5) 5 5 6
Format: SLL rd,rt,sa
Purpose: shift left constant position
Operation: r[rd] < r[rt] << sa
SLLV shift word left logical
31 25 20 15 10 5
op 0 0 SLLV
000000 s rt rd 00000 000100
6 5 5 5 5 6

Format: SLLV rd,rt,rs

Purpose: shift left number of bit by content register rs

Operation: r[rd] < r[rt] << r[rs]

6.2. INSTRUCTIONS

SL'T set on less than

39

31 25 20 15 10
) 0 SLT
000000 s rt rd 00000 101010
6 5 5) 5 5) 6

Format: SLT rd,rs,rt

Purpose: compare two registers of less than
Operation: ¢f r[rs] < r[rt] then
rird] «+ 1
else
rlrd] < 0

SLTI set on less than immediate

31 25 20 15
opP
001010 IS rt immediate
6 5 5 16

Format: SLTT rd,rs,immediate

Purpose: compare register with immediate of less than
Operation: ¢ f r[rs] < immediate then
rlrt] «— 1
else
rlrt] < 0

40 CHAPTER 6. INSTRUCTIONS

SLTIU set on less than immediate unsigned

31 25 20 15
OP
001011 IS rt immediate
6 5 5 16

Format: SLTIU rd,rs,immediate

Purpose: compare unsigned register with immediate of less than
Operation: ¢f r[rs] < immediate then
rlrt] + 1
else
rlrt] < 0

SLTU set on less than unsigned

31 25 20 15 10 5
0 0 SLTU
000000 IS rt rd 00000 101011
6 5 5 5 5 6
Format: SLTU rd,rs,rt
Purpose: compare unsigned two registers of less than
Operation: ¢f r[rs] < r[rt] then
rird] + 1
else
rlrd] <+ 0
SRA shift word right arithmetic
31 25 20 15 10
) 0 SRA
000000 00000 rt rd sa 000011
6 5 5 5 5 6

Format: SRA rd,rt,sa

Purpose: shift right constant position

Operation: r[rd] < r[rt] >> sa

6.2. INSTRUCTIONS

SRAV shift word right arithmetic variable

31 25 20 15 10
0] 0 0 SLLV
000000 s rt rd 00000 000111
6 5 5 5 5 6
Format: SRAV rd,rt,rs
Purpose: shift right number of bit by content register rs
Operation: r[rd] < r[rt] >> r[rs]
SRL shift word right logical
31 25 20 15 10
opP 0 0 SRL
000000 00000 rt rd sa 000010
6 5 5 5 5 6
Format: SRL rd,rs,sa
Purpose: shift right constant position
Operation: r[rd] < r[rt] >> sa
SRLV shift word right logical variable
31 25 20 15 10
0) 0 0 SRLV
000000 IS rt rd 00000 000110
6 5 5 5 5 6

Format: SRLV rd,rt,rs

Purpose: shift right number of bit by content register rs

Operation: r[rd] < r[rt] >> r[rs]

42 CHAPTER 6. INSTRUCTIONS

SUB subtract word

31 25 20 15 10
OP 0 SUB
000000 IS rt rd 00000 100010
6 5 5 5 5 6
Format: sub rd,rs,rt
Purpose: to subtract two register in 32 bit integer format
Operation: r[rd] < r[rs] — r[rt]
SUBU substract unsigned word
31 25 20 15 10
OopP 0 SUBU
000000 IS rt rd 00000 100011
6 5 5 5 5 6

Format: SUBU rd,rs,rt

Purpose: to subtract two register in 32 bit integer format
Operation: r[rd] < r[rs| — rrt]

SW store word

31 25 20 15
or
101011 rs rt offset
6 5 5 16

Format: SW rt,offset(rs)

Purpose: store a word into memory
Operation: memory(r[rs] + of fset) <« r[rt]

6.2. INSTRUCTIONS

SWL store word left

43

31 25 20 15
oP
101010 rs rt offset
6 5 5 16

Format: SWL rt,offset(rs)

Purpose: store the most significant part of a word to an unaligned memory address
Operation: memory(r[rs] + of fset) <+ r[rt]

Memory contents

Lififk][1
Memory contents | Addry..o
A|B|C| D 0
1| B|C|] D 1
i|lj|C| D 2
il lk D 3

SWR store word right

31 25 20 15
opP
101110 s rt offset
6 5 5 16

Format: SWR rt,offset(rs)

noch mal genau die Implementierung tiberpriifen Purpose: store a word into memory

Operation: memory(r[rs] + of fset) <« r[rt]

Memory contents

Li[i[k] 1
Memory contents | Addry. .o
Aljlk 1 0
A|B |k 1 1
A|B|C 1 2
A|B|C D 3

44

CHAPTER 6. INSTRUCTIONS

Bibliography

(1] Ervin Farquhar and Philip Bunce. The MIPS Programmer ‘s Handbook. Morgan Kauf-
mann. 1994.

[2] David A. Patterson and John L Hennessy. 4. Auflage. Oldenburg Verlag, 2009.
[3] Charles Price. MIPS IV Instruction Set. Revision 3.2. mips-isa.pdf. 1995.
[4] Dominic Sweetman. See MIPS run Linux. Vol. Second Edition. Morgan Kaufman. 2007.

45

